

On the effect of Magnetospheric Shielding on the Lunar Hydrogen Distribution

O. J. Tucker¹, W. M. Farrell¹, & A. R. Poppe²

¹NASA/GSFC ²University of California Berkley

Understanding the Lunar Hydrogen Cycle

Observations of the H Cycle

- ARTEMIS Charged Particle Detect.
 - 5 years of ion data (Poppe et al. 2017 JGR)
- CHACE Mass Spec.
 - $H_2 = 500 800 \, cc$ in tail (Thampi et al. 2015 PSS)
- LAMP UV Spec.
 - $H_2 = 1200\pm400$ cc at T = 120K (Stern et al. 2013 Icarus)
- LACE Surface Mass Spec.
 - $H_2 = 6.5e4$ cc (Upper Limit), SZA ~ (-136°, 168°, -89°)
 - (Hoffman et al. 1973. Proc. Lunar Sci. Conf. 4, 2865)
- M³ IR Observations
 - Rel. abs. ~0.31 (in tail) & ~0.35 (out tail), 0-10 lat.
 - ESPAT ~0.25 (in tail) & ~0.4 (out tail), -55 lat.
 - (Cho et al. 2018 JGR; Li et al. 2018 LPSC)

Solar Wind Implantation and Diffusion

- Diffusion characterized by surface *T* & density of defect sites (Starukhina, 2006, 2012)
 - $\tau_D = h^2 \exp(E/T)/D_0$
- Distribution of activation energies (Farrell et al. 2015/2017)
 - $F(E) \sim \exp(-(E E_a)^2/E_W^2)$
 - E_a peak energy, E_w width of distribution

T(K)	E _{V&CB} = 1.0 eV	<i>E</i> _{Int&GB} = 0.5 eV
180	>> Gyrs	12 days
280	31 decades	10 seconds

Simulation Details

- Track dynamic steady state of H surface density and exosphere
- Source: Proton Flux
- Losses: Thermal Escape & Photodestruction

Monte Carlo Model

- Implantation Depth: f(Z)
- Incident Ion Energy: $f(E_i)$
- Diffusive Lifetime: f(E)
- Thermal desorption: f(v)
- Photo-destruction Lifetime

Previous Work

- Mean M³ surface concentration reproduced with:
 - (D₀ = 10^{-12} m²/s, E_a ~ 0.5 eV, E_w ~ 0.078 eV)
- $E_a \sim > 0.7eV$ too much H retention
- $E_a \sim < 0.3 eV$ too little H retention

Farrell et al. (2017), Tucker et al. (2019)

Surface Concentration at Full Moon

Surface Concentration at 0 latitude

Snapshot of Surface Concentration

Surface Concentration at New Moon

Surface Concentration at 0 latitude

Snapshot of Surface Concentration

Subsolar Concentration Full/New Moon

- LPSC M³ spectra in and out of tail: Li et al. (2018)
- Model does not account librations or fluctuations of tail due to Solar Events

Exosphere Surface Number Density (H₂)

Distribution during full moon

- LAMP analyses of H₂ in tail ~1000 cc (Cook et al. LPSC 2016)
- Subsolar density ~ 400cc

day

350

400

Exosphere Surface Number Density H₂

Distribution during new moon

- Consistent with dusk/dawn asymmetry reported in Cook et al. (2013)
- Subsolar density ~ 2000 cc, 80% larger than when in tail

CHACE Measurements of H₂ in Magnetotail

- Dayside Distribution consistent with model calculation
- H₂ Lifetime against escape on order of a couple hours

Change in Local Exosphere Density H₂ over lunation

Independent Observations of H₂ Seem consistent

- ➤ Thampi et al. (2015)...... 'our estimates are significantly lower than the upper limits for dawn hours (2100 2400 cc), reported by Cook Jason et al. (2013)'.
- Expect Changes in SW sources with lifetimes < ~ 5 days: thermal escape H₂, He
- Not expected to see changes in species like Ne, Ar

Figure 3: He and H₂ surface number density as a function of time as the Moon passes through the Earth's magnetotail. The data are averaged over 53 months.

Summary

- Connection between surface volatiles and exosphere content crucial to understand volatile cycles
- Local In Situ measurements over a Lunation can provide insight on H₂O vs. OH and dynamics controlling distribution
- At subsolar point surface concentration 20 ppm (in tail), 2 ppm (out of tail), and H2 exosphere order of magnitude decrease in tail.
- Diffusion of H in irradiated silica not well constrained (D_0 , E_a , E_w) requires experiments and theoretical studies

The Authors thank SSERVI & DREAM2 for support. Computational Support provided by Xsede Platform

Loss of hydrogen in the tail

Implanted H atoms with activation energies > 0.5 eV contribute to the long term surface concentration

Hydrogen Diffusion in Silica affected by Defect Abundance

Diffusion Prefactor $D_0 \sim 10^{-9} - 10^{-12} \text{ m}^2/\text{s}$: Fink et al. (1995) & Griscom et al. (1984) Activation Energies $E_a \sim 0.2 - 0.5 \text{ eV}$: Fink et al. (1995), Griscom et al. (1984), Devine (1985)

Global H₂ Density in Equatorial Slice

Implantation Depth vs. Incident Ion Energy

Poppe et al. (2018) using ARTEMIS data characterizes incident flux on surface:

Mean Sheath Flux = $2.4E12 \text{ cm}^{-2} \text{ s}^{-1}$ Mean Tail Flux = $2.2E11 \text{ cm}^{-2} \text{ s}^{-1}$ Mean SW Flux = $2E12 \text{ cm}^{-2} \text{ s}^{-1}$

For each implanted proton

- Monte Carlo select incident energy
- > Incident energy determines implantation depth
- Surface temperature & Monte Carlo selected activation energy determines lifetime

Surface OH and Exosphere H₂ over lunation

. D. cape (a 2.07. cr.). ... karneam, are reason.

$$\equiv \text{Si-OH} \rightleftharpoons \equiv \text{Si-O'+H}^{\circ}$$
 (1)

$$\equiv \text{Si-O'} + \text{H}_2^{230 \text{ K}} \equiv \text{Si-OH} + \text{H}^{\circ}, \qquad (2)$$